

Diagnosis and Management of Acute Kidney Injury

David E. Leaf, MD, MMSc, FASN Associate Professor of Medicine, Harvard Medical School Director of Clinical and Translational Research in Acute Kidney Injury Division of Renal Medicine, Brigham and Women's Hospital

> BWH Internal Medicine House Staff July 11, 2024

Research Support

- BioPorto
- BTG International
- Metro International Biotech LLC
- Renibus Therapeutics, Inc.
- Alexion Pharmaceuticals

Consulting

- Sidereal Therapeutics
- Casma Therapeutics
- MexBrain
- Entrada
- CardioRenal Systems, Inc.
- Alexion Pharmaceuticals

Joseph Gray, 'Battle of Britain: The Blitz', 1940 (Imperial War Museum)

Original Description of AKI

BRITISH MEDICAL JOURNAL

LONDON SATURDAY MARCH 22 1941

CRUSH INJURIES WITH IMPAIRMENT OF RENAL FUNCTION

E. G. L. BYWATERS, M.B., B.S., M.R.C.P. Beit Memorial Fellow

AND

D. BEALL, Ph.D.Toronto

(From the Departments of Medicine and Pathology, British Postgraduate Medical School)

[WITH SPECIAL PLATE]

Amongst air-raid casualties seen at this hospital have been four cases of crush injury of the limbs which, because of the general similarity of their clinical course, were thought

the war. Such a condition ' may have been observed in civil practice, but we have been unable to find any account of it in the literature. The cases are of interest on account of the problem propounded by both pathogenesis and treatment. The picture presented by these four cases, and substantiated by others, is briefly as follows:

The patient has been buried for several hours with pressure on a limb. On admission he looks in good condition except for swelling of the limb, some local anaesthesia, and whealing. The haemoglobin, however. is raised, and a

and progress even though the crushed limb be amputated. The urinary output, initially small, owing perhaps to the severity of the shock, diminishes further. The urine to represent a specific and hitherto unreported syndrome, contains albumin and many dark brown or black granular and one which has been and will be seen elsewhere during casts. These later decrease in number. The patient is

alternately drowsy and anxiously aware the severity of his illness. of Slight generalized oedema, thirst, and incessant vomiting develop, and the blood pressure often remains slightly raised. The blood urea and potassium, raised at an early stage, become progressively higher, and death occurs comparatively suddenly, frequently within a week. Necropsy reveals necrosis of muscle and, the renal tubules, degenerative changes and casts containing brown pigment,

Case I A female aged 17 had been buried

for

nine hours

few hours later, despite vasoconstruction, made manifest by pallor, coldness, and sweating, the blood pressure falls. This is restored to pre-shock level by (often multiple) transfusions of serum, plasma, or, occasionally, blood. Anxiety may now arise concerning the circulation in the injured limb, which may show diminution of arterial pulsation distally, accompanied by all the changes of incipient gangrene. Signs of renal damage soon appear,

with heavy masonry lying across the left leg. On admission she showed slight bruises generally, and multiple superficial abrasions below the left knee. The leg was swollen and sensation was impaired at the ankle, where all power and movement were lost. Other limbs appeared undamaged. The skin was pallid and clammy; the blood pressure was 85/70 mm, Hg. The clinical course is shown on Chart I. Recalcified plasma-saline (Clegg and Dible, 1940) (subsequently referred to as "serum"), followed by 5% glucose-saline,

Eric Bywaters, MB BS Jan 6, 1910 – Feb 4, 2003 Hammersmith Hospital, London

Case #1

- 67yoF prisoner sent to ED for AMS
- PMHx: Not available
- Meds: None
- Soc Hx: Institutionalized
- Exam: T 102.6, BP 88/50, HR 112, RR 24, SpO2 92%RA
- HEENT: Icteric sclerae
- CV: Tachycardic, ?pericardial friction rub
- Lungs: Crackles ¹/₂ up bilaterally
- Abd: Soft, non-distended, tender in RUQ
- Ext: Skin jaundiced, **3+ lower extremity edema**
- Neuro: Obtunded; responsive to sternal rub only

What lab studies do you want? K 14.1 mEq/L BUN 396 mg/dL

September 11, 1945: first life-saving hemodialysis procedure

Early days of hemodialysis

1912

Thomas Graham Ox bladder in distilled water Abel, Rowntree,
Turner
"Vividiffusion"
2 hour procedure
on a rabbit

1924

Georg Haas First ever HD session (15 min) September 11, 1945

Slide courtesy of Dr. Sus Waikar

Early days of hemodialysis

1945

Kolff Rotating Drum artificial kidney

Built out of scraps of metal and wood; 20-meter long cellophane sausage casing used as a semipermeable membrane

1950

Kolff-Brigham Artificial Kidney

George Thorn invited Kolff to PBBH; Kolff worked with Carl Walters and John Merrill to redesign the rotating drum machine

December 23, 1954: **First Successful Kidney Transplant**

"Never before has such a feat of organ transplanting in man been accomplished. In no other case in the history of medicine has a human kidney transplant 'taken' and lasted so long. Attempts at transplanting other organs have not succeeded either."

-Robert K. Plumb, New York Times

1990: Dr. Joseph Murray awarded the Nobel Prize in Physiology or Medicine

MAN'S LIFE SAVED BY TWIN'S KIDNEY

Identical Brother Furnishes Organ in First Successful **Transplanting Surgery**

2 American Transplant Pioneers Win Nobel Prize in Medicine

Acute Kidney Injury (AKI) Today: A Major Public Health Burden

AKI occurs in ~10% of hospitalized patients and up to 50% of ICU patients

Costs >\$10B annually in the U.S. alone

Patients who develop AKI are at *\\risk* of in-hospital death

Those who survive have an increased risk of CKD, ESKD, and CV events

No therapy reliably prevents or treats AKI

AKI Definitions

Epidemiology of AKI

Diagnostic Approach

Management

Why AKI is the most interesting topic in internal medicine

Acute Kidney Injury (AKI) Nomenclature

or the syndrome formerly known as "Acute Renal Failure"

"Acute"

Happens within hours to days

"Kidney"

More familiar to patients than "Renal"

<u>"Injury"</u>

Refers to organ damage ("Failure" implies need for dialysis)

Historical Consensus Definitions of AKI

RIFLE Criteria

AKIN Criteria

Patients who receive renal replacement therapy (RRT) are considered to have met the criteria for stage 3 irrespective of the stage that they are in at the time of commencement of RRT.

Crit Care, 2004

Crit Care, 2007

Current Consensus Definition of AKI

Kidney Int, 2012

"KDIGO" Definition of AKI

Any of the following:

- ↑SCr ≥0.3 mg/dL in 48h or ≥50% in 7d
- Oliguria (UOP <0.5 ml/kg/h x 6h)
- Dialysis

Staging of AKI severity

"On rounds, when a medical student presents a case of AKI, the focus may turn to the KDIGO-sanctioned stage: is it 1a or is it 1b, or could it even be stage 2? <u>We then have less time to argue over</u> why the creatinine is increased in the first place..."

-Sushrut Waikar, Kidney Int, 2019

Incidence of AKI among hospitalized patients at BWH (n=31,971) in 2010

Zheng et al., CJASN, 2013

Mortality associated with AKI

Case #2: History, Vitals, Exam, Labs

37M with Crohn's disease s/p subtotal colectomy admitted with cough, fatigue \rightarrow LLL PNA

Vitals

T: 101.5 BP: 115/ 71 HR: 148 RR: 20 SpO2: 98% RA <u>Exam</u>

Gen: NAD Lungs: Clear CV: Tachycardia Abd: Non-tender

Labs

129	90	6
4.8	20	0.85

WBC 25.8 (87% N) Hgb 14.3; Plts 501

AST 11, ALT 11, ALK-P 111 T.Bili 0.4, Alb 3.0

BCx, flu, legionella: all neg CTAP w/ IV contrast: neg

Classification and Common Etiologies of AKI

Common clinical settings where AKI occurs Physiologic Classification PRE-RENAL Impaired perfusion: Cardiac failure Sepsis **Cardiac surgery** Sepsis Blood loss Dehydration Vascular occlusion RENAL Glomerulonephritis Small-vessel vasculitis Acute tubular necrosis Drugs Toxins Prolonged hypotension Interstitial nephritis Drugs Toxins Inflammatory disease Infection **Nephrotoxins** Exogenous Endogenous POST-RENAL Urinary calculi Retroperitoneal fibrosis Benign prostatic Chemotherapy Myoglobin (rhabdo) enlargement Prostate cancer Antibiotics Hemoglobin (MAHA) Cervical cancer Urethral stricture/valves **NSAIDs** Uric acid (TLS) Meatal stenosis/phimosis IV contrast Davidsons Essentials of Medicine, 2nd edition

Approach to the Patient with AKI

Pre-Renal Kidney Ureter **Intrinsic Renal** Bladder **Post-Renal** Sphincter Urethra

Waikar & Bonventre, AKI chapter in Harrison's Principles of Internal Medicine, 18th ed.

<u>Overview</u>

- No structural injury to kidney
- SCr increases due to renal hypoperfusion
- Restoration of hemodynamics -> rapid recovery

<u>Causes</u>

- "True" Volume depletion
 GI losses, hemorrhage
- ↓Effective arterial blood volume – CHF, HRS
- Impaired renal hemodynamics
 - NSAIDs (afferent vasoconstriction)
 - ACE-I/ARBs (efferent vasodilation)

Waikar & Bonventre, AKI chapter in Harrison's Principles of Internal Medicine, 18th ed.

Intrinsic renal disease

Post-renal: A plumbing problem

Diagnostic/imaging workup:

- Bladder scan or insert Foley
- Renal U/S or CTAP

However, not every patient with AKI needs a renal U/S! (utility heavily dependent on pre-test probability)

Pearl

• Early in the course of obstruction, beware of false negatives on imaging

Waikar & Bonventre, AKI chapter in Harrison's Principles of Internal Medicine, 18th ed.

Urine Tests

• UA, Sediment, Sodium (FeNa)

Blood Tests

- GN: ANCA, anti-GBM, ANA, C3, C4, HCV, cryo
- TLS: Uric acid, Ca, PO4, LDH
- Hemolysis: LDH, haptoglobin, smear
- Rhabdo: CPK
- Paraprotein disorder: SPEP, SFLCs

Radiographic Tests

Renal U/S or CTAP

Pearls re Urinalysis and AKI

- "Blood" (heme) on UA but no RBCs in urine sediment: think rhabdo or hemolysis
- "Protein" on UA only detects albumin (can miss other causes of proteinuria, like MM)
- Normoglycemic glucosuria: think proximal tubular dysfunction (aka Fanconi's syndrome)

Tenofovir Ifosphamide Cisplatin Myeloma

Urinalysis/Urine Sediment and AKI

UA/urine sediment finding	Diagnosis
3+Blood on dipstick, no RBCs on sediment	
3+hematuria, 3+proteinuria, RBCs, WBCs	
Completely bland (no protein, no LE/nit/heme, no WBC/RBC)	
Granular casts	
Sterile pyuria	
Oxalate crystals	

Percentage of <u>filtered</u> sodium that is <u>excreted</u>

$$FENa = \frac{Urine Na \times Serum Cr}{Serum Na \times UrCr}$$

Traditional teaching: <1% = pre-renal; >2% = ATN

Low FeNa does not necessarily mean give IVF!

Causes of low FeNa:

- GN
- Rhabdo
- IV Contrast

Causes of high FeNa:

- Diuretics
- CKD

Frequency and Utility of Diagnostic Testing in AKI

- N~32,000 admissions to BWH in 2010
 n=4903 patients with AKI (5,731 AKI episodes)
- Reviewed all diagnostic tests ordered by clinicians
- Assessed frequency of abnormal results, and how often test results influenced diagnosis or management

Frequency and Utility of Diagnostic Testing in AKI

Leaf et al., BMC Nephrol, 2016

Leaf et al., BMC Nephrol, 2016

• We have a limited spectrum of tests available in AKI

• Yield of "serologic" testing (e.g., ANCA, anti-GBM, and SPEP) in unselected AKI is very low

 Renal ultrasound has reasonably high yield when suspicion for obstruction is high

Hospital Course (continued)

Hospital Day

When to biopsy for AKI

Safety! Mechanical ventilation? Uncontrolled HTN? ASA/Anticoagulation?

DIAGNOSTIC UNCERTAINTY

Waikar and McMahon, Semin Nephrol, 2017

Renal Biopsy Findings

Acute interstitial nephritis – severe

Acute tubular necrosis

Courtesy, H. Rennke

Hospital Course (continued)

Hospital Course (continued)

Summary of his AKI

- Non-oliguric AKI with SCr from <1 to >4 in one week
 - AIN from Abx (Zosyn)
 - ATN (?contrast vs. from AIN)
 - Diagnosis through biopsy guided therapy
- Traditional diagnostic tests of limited value
 - FeNa was < 1%
 - Urine sediment was bland
 - No eosinophilia

Can we do better?

Acute Interstitial Nephritis (AIN)

- Variable timing of onset
 - Several weeks with 1st exposure to drug, 3-5 days after 2nd exposure
- Classic triad: fever, rash, eosinophilia seen in only 10%
- Can see:
 - Urinary WBCs, WBC casts; sometimes RBCs
 - Subnephrotic proteinuria ("tubular" proteinuria")
 - Fanconi's (glucosuria, aminoaciduria, PO4 wasting, type 2 RTA)
- Gallium scan: old mini-literature from 1980s; ?utility
- Kidney biopsy: interstitial edema, infiltrate with T cells, monocytes; also eosinophils, plasma cells, neutrophils

AJKD		All Patients
Orginal Investigation	Characteristic	(N = 133)
Biopsy-Proven Acute Interstitial Nephritis, 1993-2011: A Case Series	Age (y)	58 (43-70.5)
Angela K. Muriithi, MBChB, MPH, ¹ Nelson Leung, MD, ¹ Anthony M. Valeri, MD, ² Lynn D. Cornell, MD, ³ Sanjeev Sethi, MD, PhD, ³ Mary E. Fidler, MD, ³ and Samih H. Nasr, MD ³	Male sex	64 (48)
	White race	121/126 (96)
	Inpatient	77 (58)
	Rash	22 (17)
	Fever	22 (17)
	Oliguria	19 (14)
	Leukocytosis	38 (29)
133 patients with	Eosinophilia	22 (18)
	Triad of fever + rash + eosinophilia	9 (7)
biopsy-proven AIN	Pyuria	61 (47)
	Hematuria	39 (30)
	Eosinophiluria	28/82 (34)
	Proteinuria	122 (92)

- Treatment approach
 - Careful review of medications
 - Discontinuation of offending agent
 - -+/- steroids
 - No RCT has ever been (perhaps never will be) performed
 - Early steroid therapy may speed recovery (observational data only)

AKI Management in Specific Clinical Settings

AKI Etiology	Therapy	Clinical Pearl
Rhabdo		
TLS		
CHF/ADHF		
AIN		
Anti-GBM		

- A Acidosis
- E Electrolytes (K+)
- Ingestion (lithium, metformin, salicylates)
- **O Overload (refractory to diuretics)**
- **U** Uremia (AMS, pericarditis)

Dialysis Modality in AKI: Indications for CRRT over iHD

Hemodynamic instability (e.g., multi-pressor shock)

Large daily obligate fluid intake

Traumatic brain injury / concern for herniation

Fulminant hepatic failure

Thank you!

DELEAF@bwh.harvard.edu

LEAF / LAB www.leaflab.org

HARVARD MEDICAL SCHOOL **TEACHING HOSPITAL**

Extra Slides

4 Important Recent RCTs in AKI

PRESERVE	PLUS	
The NEW ENGLAND	The NEW ENGLAND	
JOURNAL of MEDICINE	JOURNAL of MEDICINE	
Outcomes after Angiography with Sodium Bicarbonate	Balanced Multielectrolyte Solution versus Saline in Critically	
and Acetylcysteine	Ill Adults	
STARRT-AKI	CONFIRM	
ORIGINAL ARTICLE	ORIGINAL ARTICLE	
Timing of Initiation of Renal-Replacement	Terlipressin plus Albumin for the Treatment	
Therapy in Acute Kidney Injury	of Type 1 Hepatorenal Syndrome	

5177 patients undergoing coronary or non-coronary angiography

Randomized (2x2 factorial design): IV bicarb vs. IV saline NAC vs. placebo

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

VOL. 378 NO. 7

Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine

FEBRUARY 15, 2018

<u>Primary end point</u>: composite of death, dialysis, or persistent renal function decline (↑SCr ≥50% at 90 days)

No effect of either intervention on the primary outcome

Weisbord et al., N Engl J Med, 2018

PLUS Trial

5037 critically ill adults randomized to normal saline vs. balanced solution (Plasma-Lyte 148)

Primary endpoint: 90-day mortality

```
Secondary endpoints:
-Max SCr
-AKI-RRT
```

No effect on the primary outcome

Finfer et al., N Engl J Med, 2022

Kaplan-Meier Estimates of the Probability of Survival

Secondary Outcomes

	BMES	Saline
Maximum creatinine level in the ICU during days 1 to 7, mg/dl Absolute difference, 0.01 (-0.04 to 0.06)	1.76±1.44	1.75±1.43
Maximum increase in creatinine level in the ICU, mg/dl Absolute difference, 0.01 (-0.05 to 0.06)	0.41±1.06	0.41±1.02
Receipt of new renal-replacement therapy, no. (%) OR, 0.98 (0.83 to 1.16) Absolute difference, -0.20 (-2.96 to 2.56) percentage points	306 (12.7)	310 (12.9)

Published January 18, 2022

DOI: 10.1056/EVIDoa2100010

ORIGINAL ARTICLE

Balanced Crystalloids versus Saline in Critically Ill Adults — A Systematic Review with Meta-Analysis

13 RCTs 35,884 Critically ill adults

No difference in 90-day mortality or risk of AKI

STARRT-AKI Trial

3019 critically ill patients with AKI

Randomized to accelerated RRT (initiated within 12h of meeting criteria) vs. standard strategy

Primary end point: 90-day mortality

ORIGINAL ARTICLE

Timing of Initiation of Renal-Replacement Therapy in Acute Kidney Injury

The STARRT-AKI Investigators, for the Canadian Critical Care Trials Group, the Australian and New Zealand Intensive Care Society Clinical Trials Group, the United Kingdom Critical Care Research Group, the Canadian Nephrology Trials Network, and the Irish Critical Care Trials Group*

No effect of accelerated RRT on mortality

STARRT-AKI, N Engl J Med, 2020

300 patients with HRS

Randomized 2:1 to terlipressin vs. placebo

ORIGINAL ARTICLE

Terlipressin plus Albumin for the Treatment of Type 1 Hepatorenal Syndrome

Concomitant use of albumin strongly recommended in both groups

<u>Primary end point:</u> Reversal of HRS (≥2 consecutive SCr values ≤1.5 mg/dl AND survival without dialysis for ≥10 days after completion of treatment)

HRS reversal occurred in 32% in the terlipressin group and 17% in placebo (P=0.006)

Wong et al., N Engl J Med, 2021

PRESERVE Trial found no benefit with IV NaHCO3 (vs. IV NS) or NAC (vs. placebo) in preventing contrast nephropathy

PLUS Trial found no benefit with balanced crystalloid (vs. NS)

STARRT Trial found no benefit with accelerated (vs. standard) RRT

CONFIRM Trial *found* a benefit with terlipressin in HRS

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Cefepime vs Piperacillin-Tazobactam in Adults Hospitalized With Acute Infection The ACORN Randomized Clinical Trial

RESULTS There were 2511 patients included in the primary analysis (median age, 58 years [IQR, 43-69 years]; 42.7% were female; 16.3% were Non-Hispanic Black; 5.4% were Hispanic; 94.7% were enrolled in the emergency department; and 77.2% were receiving vancomycin at enrollment). The highest stage of acute kidney injury or death was not significantly different between the cefepime group and the piperacillin-tazobactam group; there were 85 patients (n = 1214; 7.0%) in the cefepime group with stage 3 acute kidney injury and 92 (7.6%) who died vs 97 patients (n = 1297; 7.5%) in the piperacillin-tazobactam group with stage 3 acute kidney injury and 78 (6.0%) who died (odds ratio, 0.95 [95% CI, 0.80 to 1.13], P = .56). The incidence of major adverse kidney events at day 14 did not differ between groups (124 patients [10.2%] in the cefepime group vs 114 patients [8.8%] in the piperacillin-tazobactam group; absolute difference, 1.4% [95% CI, -1.0% to 3.8%]). Patients in the cefepime group experienced fewer days alive and free of delirium and coma within 14 days (mean [SD], 11.9 [4.6] days vs 12.2 [4.3] days in the piperacillin-tazobactam group; odds ratio, 0.79 [95% CI, 0.65 to 0.95]).

CONCLUSIONS AND RELEVANCE Among hospitalized adults in this randomized clinical trial, treatment with piperacillin-tazobactam did not increase the incidence of acute kidney injury or death. Treatment with cefepime resulted in more neurological dysfunction.