

Pulmonary Artery Catheterization & Cardiogenic Shock: Part 1

BWH Housestaff Noon Conference August 14, 2024

Marc S. Sabatine, MD, MPH Chair, TIMI Study Group Lewis Dexter, MD, Distinguished Chair in Cardiovascular Medicine Professor of Medicine, Harvard Medical School

Research Grant Support through BWH:

Abbott; Amgen; Anthos Therapeutics; AstraZeneca; Boehringer Ingelheim; Daiichi-Sankyo; Ionis; Merck; Novartis; Pfizer; Saghmos Therapeutics; Verve Therapeutics

Scientific Advisory Boards & Consulting:

Amgen; AMPEL BioSolutions; Anthos Therapeutics; AstraZeneca; Boehringer Ingelheim; Dr. Reddy's Laboratories

"State of cellular and tissue hypoxia due to either $\downarrow O_2$ delivery, $\uparrow O_2$ consumption, inadequate O_2 utilization, or a combination of these processes."

Туре	PCWP	СО	SVR
Hypovolemic			
Cardiogenic			
Distributive			

Туре	PCWP	СО	SVR
Hypovolemic	$\downarrow\downarrow$	\rightarrow	►
Cardiogenic			
Distributive			

Туре	PCWP	СО	SVR
Hypovolemic	$\downarrow\downarrow$	\rightarrow	►
Cardiogenic	1	$\downarrow \downarrow$	1
Distributive			

Туре	PCWP	CO	SVR
Hypovolemic	$\downarrow \downarrow$	\rightarrow	←
Cardiogenic	1	$\downarrow \downarrow$	1
Distributive	↔ or ↓	Var	$\downarrow\downarrow$

Types of Shock (2.0)

Туре	9	RA	PCWP	СО	SVR
Нур	ovolemic	$\downarrow\downarrow$	$\downarrow\downarrow$	\rightarrow	1
jen.	Left-sided	\leftrightarrow or \uparrow	1		
dioc	Right-sided	1	\leftrightarrow or \downarrow	$\downarrow\downarrow$	1
Car	Biventricular	1	1		
Mixe	ed	1	1	$\downarrow\downarrow$	$\downarrow\downarrow$
Dist	ributive	\leftrightarrow or \downarrow	\leftrightarrow or \downarrow	Var	$\downarrow\downarrow$
lct.	Tension PTX	$\downarrow\downarrow$	\downarrow		
stru	PE	1	\downarrow	$\downarrow\downarrow$	1
qO	Tamponade	1	1		

- Complex clinical syndrome characterized by clinical triad of:
 - **1)** Tissue and organ hypoperfusion $\rightarrow \Delta$ mental status, cool or mottled extremities, oliguria, ischemic liver or kidney injury, lactic acidosis
 - 2) Ineffective cardiac output (clinical assessment or invasive hemodynamics)
 - 3) Normal or elevated cardiac filling pressures (pulmonary congestion seen in ~2/3)
- Clinical trial entry criteria generally include sustained HoTN, but "<u>normotensive</u> CS" can occur (~5%) in setting of intense vasoconstriction
- Hemodynamic criteria:
 - CI <2.2 L/min/m²
 - PCWP >15 mmHg

Туре	Invasive	Non-Invasive
Perfusion pressure	Arterial line	
Filling Pressures	Left-sided: PCWP from PAC Right-sided: RA (or CVP from CVC)	
Cardiac Output	Thermodilution or Fick CO from PAC (can approx. w/ S _{cv} O ₂ from CVC)	
SVR	Calculated from MAP, CVP & CO	

Туре	Invasive	Non-Invasive
Perfusion pressure	Arterial line	Sphygmomanometer
Filling Pressures	Left-sided: PCWP from PAC Right-sided: RA (or CVP from CVC)	
Cardiac Output	Thermodilution or Fick CO from PAC (can approx. w/ S _{cv} O ₂ from CVC)	
SVR	Calculated from MAP, CVP & CO	

Туре	Invasive	Non-Invasive
Perfusion pressure	Arterial line	Sphygmomanometer
Filling Pressures	Left-sided: PCWP from PAC Right-sided: RA (or CVP from CVC)	Left-sided: (cardiogenic) pulmonary edema (not always apparent in chronic HF), S ₃ R-sided: JVP; periph edema & ascites (not acutely; affected by oncotic P)
Cardiac Output	Thermodilution or Fick CO from PAC (can approx. w/ S _{cv} O ₂ from CVC)	
SVR	Calculated from MAP, CVP & CO	

Туре	Invasive	Non-Invasive
Perfusion pressure	Arterial line	Sphygmomanometer
Filling Pressures	Left-sided: PCWP from PAC Right-sided: RA (or CVP from CVC)	Left-sided: (cardiogenic) pulmonary edema (not always apparent in chronic HF), S ₃ R-sided: JVP; periph edema & ascites (not acutely; affected by oncotic P)
Cardiac Output	Thermodilution or Fick CO from PAC (can approx. w/ S _{cv} O ₂ from CVC)	UOP (not if other cause of AKI); LFTs, lactate; pulse pressure; mental status
SVR	Calculated from MAP, CVP & CO	

Туре	Invasive	Non-Invasive
Perfusion pressure	Arterial line	Sphygmomanometer
Filling Pressures	Left-sided: PCWP from PAC Right-sided: RA (or CVP from CVC)	Left-sided: (cardiogenic) pulmonary edema (not always apparent in chronic HF), S ₃ R-sided: JVP; periph edema & ascites (not acutely; affected by oncotic P)
Cardiac Output	Thermodilution or Fick CO from PAC (can approx. w/ S _{cv} O ₂ from CVC)	UOP (not if other cause of AKI); LFTs, lactate; pulse pressure; mental status
SVR	Calculated from MAP, CVP & CO	Capillary refill; forearm & leg temperature

RAP vs. PCWP in Chronic HF

1000 Patients with Chronic HF Evaluated at Transplant Center w/ PAC

An Academic Research Organization of

Brigham and Women's Hospital and Harvard Medical School

		PCWP	
		<22	≥22
<10	<10	~30%	~15%
	≥10	~6%	~49%

- If RAP high, WP very likely high
- If RAP low, WP still high in ~1/3 of cases

CVP vs. PCWP in Acute MI

Forrester et al. NEJM 1971;285:190

Oxygen Saturation in Shock

		Correla	tion
Situation	CVO ₂ vs. MVO ₂	Absolute	Δs
Normal	CVO ₂ 2-3% lower	n/a	n/a
Shock	CVO ₂ ~6±6% <u>higher</u>	0.89	n/a
Cardiogenic Shock	CVO ₂ ~10±10% <u>higher</u>	0.55	0.92

↓ splanchnic blood flow → ↑ O_2 extraction → ↓ IVC O_2 sat

Lewis Dexter, MD

- Born in Boston
- Harvard (1932), HMS (1936)
- Residency at Presbyterian
- Returned to Boston to study w/ Soma Weiss
- Went to Buenos Aires to study hypertension w/ Bernardo Houssay (who would go on to receive Nobel Prize)
- Returned to Boston, continued his research under Soma Weiss (now at Peter Bent Brigham) to study renin

⁴ 1st Catheterization of Pulmonary Artery

- On Dec 7, 1944, catheterizing renal vein of a patient w/ HTN under fluoro
- "I decided to wander around the heart ... Suddenly, this catheter came clear out in the lung field and I was sure I [had] perforated the heart. I didn't have any idea what to do ..."
- I turned on the overhead lights and said, "Mr. S_____, how are you?"
- He said, "I feel a hell of a lot better than you look."
- "I went and looked up the anatomy of the chest and I figured I had gone into the pulmonary artery."
- Later that day, discussed with HMS Dean Charles Burwell (a cardiologist), who remarked that if he could do it again, could study congenital heart disease, which Dexter went on to do.

Balloon Flotation PAC

- "I had had a very difficult evening with a very sick lady and failed completely to advance [the PA] catheter.
- The next day I was watching my kids at the beach and there was a sailboat on an apparently calm sea and it had a big spinnaker out in front of it.
- So, I thought well now probably the answer is to have a propulsion mechanism. A sail ... or something like that
- And stick that on the end of a flexible catheter and that would work."

n Academic Research Organization of

righam and Women's Hospital and Harvard Medical School

Jeremy Swan, MD

NEJM 1970;283:447 & Circulation 2009;119:147

Pulmonary Artery Catheter

PAC Waveforms

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

TIMI

BWH

LA, LV, and Aortic pressures

PAC Waveforms

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

TIMI

BWH

Pulm Capillary Wedge Pressure

When balloon inflated, static column of blood between distal pulmonary artery and distal pulmonary vein. No flow, ∴ pressures should be equivalent.

What value best represents LV preload?

Preload

What value best represents LV preload?

Pulm Capillary Wedge Pressure

When balloon inflated, static column of blood between distal pulmonary artery and distal pulmonary vein. No flow, ∴ pressures should be equivalent.

PCWP vs. Preload

When balloon inflated, static column of blood between distal pulmonary artery and distal pulmonary vein. No flow, ∴ pressures should be equivalent.

What is the Wedge

Spontaneously breathing patient w/o pulmonary disease

Intracardiac Pressures & Phases of Respiration

Inspiration, Expiration, or Average?

- Measured pressure relative to atmospheric pressure
- Heart sits inside pericardium within the thoracic cavity
- Want to read pressures when intrathoracic pressure closest to 0
- By convention, use end-expiration
- Spont breathing Pts: PCWP expiration > inspiration
- Ventilated Pts: PCWP expiration usually < inspiration

Read PCWP at End-Expiration

Spontaneously breathing patient w/o pulmonary disease

Calculating Cardiac Output

Thermodilution

- Application of indicator-dilution method
- Inject cold solution into RA (or heating element on PAC for CCO)
- Measure temperature at PA
- Generate a thermodilution curve
- CO inversely proportion to AUC

<u>Fick</u>

• O_2 consumption = CO × AV O_2 difference

Value (%)	Status
65-80	Normal; $DO_2 \ge VO_2$

 $DO_2 = oxygen delivery$ $VO_2 = oxygen consumption$

Value (%)	Status
65-80	Normal; $DO_2 \ge VO_2$
50-65	$\uparrow O_2$ extraction to compensate for $\downarrow DO_2$ or $\uparrow VO_2$
30-50	Exceeding max O ₂ extraction; VO ₂ > DO ₂ ; beginning of anaerobic metabolism & lactic acidosis
<30	Severe lactic acidosis & cellular death

 $DO_2 = oxygen delivery$ $VO_2 = oxygen consumption$

Value (%)	Status
>80	
65-80	Normal; $DO_2 \ge VO_2$
50-65	$\uparrow O_2$ extraction to compensate for $\downarrow DO_2$ or $\uparrow VO_2$
30-50	Exceeding max O ₂ extraction; VO ₂ > DO ₂ ; beginning of anaerobic metabolism & lactic acidosis
<30	Severe lactic acidosis & cellular death

 $DO_2 = oxygen delivery$ $VO_2 = oxygen consumption$

Value (%)	Status
>80	↓↓ VO ₂ (eg, sepsis w/ impaired extraction, hypothermia, cyanide) Shunt: L→R intracardiac shunt; large peripheral AV fistula Wedged sat (sampling pulm vv blood); ? torrential MR ↑↑ DO ₂
65-80	Normal; $DO_2 \ge VO_2$
50-65	$\uparrow O_2$ extraction to compensate for $\downarrow DO_2$ or $\uparrow VO_2$
30-50	Exceeding max O ₂ extraction; VO ₂ > DO ₂ ; beginning of anaerobic metabolism & lactic acidosis
<30	Severe lactic acidosis & cellular death

- Ohm's law: V (voltage) = I (current) × R (resistance)
- Applied to the heart: Pressure gradient = CO × Vascular Resistance Vascular Resistance = Pressure gradient / CO
- Not directly measured, but calculated
- For systemic circulation: SVR = (MAP RA) / CO
- For pulmonary circulation: PVR = (mean PA WP) / CO

• <u>SVR</u>: usually obvious in isolated septic shock (patient warm, CO high, MAP low, ∴ SVR low)

Can be useful to clarify mixed picture (low CO with concomitant vasoplegia)

- <u>PVR</u>: can differentiate ↑ pulm pressures due to intrinsic pulm vasc disease (1° PHT or PAH) vs. backward transmission of left-sided heart failure
 - PVR = (mean PA WP) / CO
 - If transpulmonary gradient (mean PA WP) ≤12 mmHg, or diastolic gradient (PA diastolic – WP) <7 mmHg, then numerator will be small, and ∴ PVR unlikely to be elevated

Measurement Error

Parameter	Error
PCWP	± 4 mmHg
Thermodilution CO	± 0.5 L/min
MVO ₂	± 2 %

Indications of PAC

- Diagnosis & evaluation
 - Ddx shock (especially if empiric therapy failed or high risk)
 - Quantify cardiac filling pressures or aid in Ddx pulmonary edema (especially if trial of diuretic failed)
 - Assess mechanical complications of acute MI
 - Quantify CO, degree of pulmonary hypertension

Treatment

- Tailored Rx in cardiogenic shock to optimize cardiac parameters
- Guide vasodilator Rx in PHT

Forward vs. Backward Failure

200 Pts w/ Acute Q-wave MI

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School

AJC 1977;39:137-45

Forward vs. Backward Failure

200 Pts w/ Acute Q-wave MI

25-33% of Pts with hypoperfusion / low Cl do not have congestion / high WP

Trial		Result
SVO ₂ Collab (NEJM '95)		
Canadian Crit Care (NEJM '03)		
French PAC (JAMA '03)		
PAC-Man (JAMA '03)		
FACTT (NEJM '06)		

Trial		Result
SVO ₂ Collab (NEJM '95)		No Δ in mortality
Canadian Crit Care (NEJM '03)		No ∆ in mortality
French PAC (JAMA '03)		No ∆ in mortality
PAC-Man (JAMA '03)		No ∆ in mortality
FACTT (NEJM '06)		No Δ in mortality

Trial	Subjects	Baseline Char	Intervention	Result
SVO ₂ Collab (NEJM '95)	Surgery, trauma, sepsis, bleed	PCWP 14 CI 3.7 MVO ₂ 68%	All PAC; CI >4.5 vs. MVO ₂ ≥70% vs. stnd care	No ∆ in mortality
Canadian Crit Care (NEJM '03)	Surgery	CVP ~10 CI ~2.8	Routine PAC w/ goal CI 3.5-4.5 vs. Ø PAC; ~1/2 got colloid or PRBCs	No ∆ in mortality
French PAC	Shock, ARDS;	n/a	PAC vs. Ø PAC;	No ∆ in
(JAMA '03)	Ø AMI, ~6% cardiogenic		no therapeutic protocol	mortality
PAC-Man	ICU;	n/a	PAC vs. \emptyset PAC; no therapeutic protocol;	No ∆ in
(JAMA '03)	~11% decomp HF		most common Δ after PAC was IVF	mortality
FACTT	ALI	CVP ~12	PAC vs. CVC; therapeutic protocol;	No ∆ in
(NEJM '06)	5L fluid pre-rand	PCWP ~15	net +3 L; dobuta <10%	mortality

Trial	Subjects	Baseline Char	Intervention	Result
ESCAPE (JAMA '05)	Decomp HF; but not cardio shock, excluded if: dopa (>3 µg//kg/min), dobuta (>3), or milrinone	PCWP 25 CI 1.9 SBP 106 SVR 1500	PAC vs. Ø PAC; goal RAP ≤8 & PCWP ≤15; inotropes discouraged; vasodil 37 vs 19% inotropes 44 vs 39%	No ∆ in mortality

Critical Care Cardiology Trial Network

BWH

An Academic Research Organization of Brigham and Women's Hospital and Harvard Medical School Kadosh BS, Berg DD, et al. JACC 2023;11:903-14

Take Home Points

- Consider if Pt in cardiogenic shock (can be normotensive)
- Use clues from physical exam
- Consider PAC for patients w/ acute MI or decompensated HF in cardiogenic shock or not responding to initial Rx for hypotension/congestion
- Study the waveforms carefully
- Filling pressures (PCWP)
 - Ensure assumptions linking PCWP to LV preload are true
 - Think about what you want to learn from PCWP (preload; pulmonary edema)
- Cardiac output: thermodilution vs. Fick (assumptions for each)
- Trends are more valuable than isolated data points